

MIG-135 PLUS

110V/220V GASLESS FLUX-CORE WELDER

Official website: www.andelitools.com

After-salesemail: support@andeligroup.com

After-sales number(USA): +1 949 617 9002 (Hong Kong): +852 8480 7265

After-sales address(USA): LIPO INC D-100,12 Hughes Irvine, CA 92618 US
(Hong Kong): Workshop 60, 3/F, Block A,

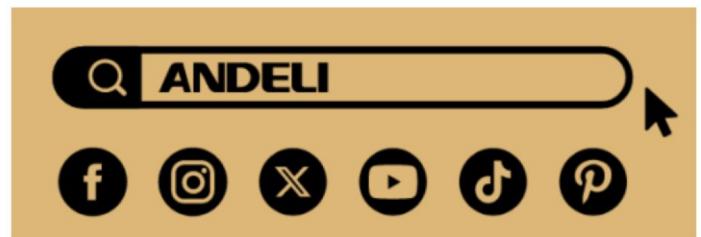
East Sun Industrial Centre, No.16 Shing Yip Street, Kwun Tong, Hong Kong

OPERATOR'S MANUAL

Copyright © ANDEL

ANDELI

To help us serve you better, go to www.andelitools.com


ANDELI

To help us serve you better, go to www.andelitools.com

Congratulations on your new ANDELI product! We at ANDELI create quality products at discounted prices to make welding affordable to everyone. To help us serve you better and for further questions, visit www.andelitools.com. Thank you for your purchase.

Welcome to join our community!!!

TABLE OF CONTENTS

1. SAFETY -----	1-6
2. INSTALLATIONS -----	7-12
2.1 Accessories -----	7
2.2 Controls and Operational Features -----	8
2.3 Installing the MIG Gun Assembly -----	9
2.4 Installing the Welding Wire -----	9
2.5 Feeding Wire Through the MIG Gun -----	10-12
3. OPERATION -----	13-28
3.1 Performance Data and Duty Cycle -----	13
3.2 Internal Thermal Protection -----	13
3.3 Welding Preparation -----	14
3.4 Welding Wire Selection -----	14
3.5 Wire Feed Roller Selection -----	14
3.6 Gas Selection -----	14
3.7 Setup for Home Menu -----	15
3.8 Set Up for Flux-cored Welding (FCAW) -----	16-21
3.9 Set Up for Stick Welding (SMAW) -----	22-24
3.10 Set Up for Lift Arc TIG Welding(GTAW) -----	24-28
4. MAINTENANCE & SERVICING -----	29
4.1 General Maintenance -----	29
4.2 Consumable Maintenance -----	29
5. TROUBLESHOOTING -----	30-36
6. WIRING DIAGRAM -----	37

1. SAFETY

THANK YOU FOR SELECTING A QUALITY PRODUCT BY ANDELI.

PLEASE EXAMINE THE PACKING BOX AND EQUIPMENT FOR DAMAGE IMMEDIATELY

When this equipment is shipped, the title passes to the purchaser upon receipt by the carrier. Consequently, claims for material damaged in shipment must be filed by the purchaser against the transportation company when the shipment is received.

SAFETY DEPENDS ON YOU

ANDELI arc welding and cutting equipment are designed and built with safety. However, your overall safety can be increased by proper installation and thoughtful operation on your part. **DO NOT INSTALL, OPERATE OR REPAIR THIS EQUIPMENT WITHOUT READING THIS MANUAL AND THE SAFETY PRECAUTIONS CONTAINED THROUGHOUT.** And most importantly, think before you act and be careful.

! WARNING

This statement appears where the information must be followed precisely to avoid serious personal injury or loss of life.

! CAUTION

This statement appears where the information must be followed to avoid minor personal injury or damage to this equipment.

KEEP YOUR HEAD OUT OF THE FUMES.

DON'T get too close to the arc. Use corrective lenses if necessary to stay a reasonable distance from the arc.

READ and obey the Safety Data Sheet (SDS) and the warning label on all welding materials containers.

USE ENOUGH VENTILATION

or exhaust at the arc, or both, to keep the fumes and gases from your breathing zone and the general area.

IN A LARGE ROOM OR OUTDOORS, natural ventilation may be adequate if you keep your head out of the fumes (See below).

USE NATURAL DRAFTS or fans to keep the fumes away from your face.

If you develop unusual symptoms, see your supervisor. Perhaps the welding atmosphere and ventilation system should be checked.

WEAR CORRECT EYE, EAR & BODY PROTECTION

PROTECT your eyes and face with welding helmet properly fitted and with proper grade of filter plate (See ANSI Z49.1).

PROTECT your body from welding spatter and arc flash with protective clothing including woolen clothing, flame-proof apron and gloves, leather leggings, and high boots.

PROTECT others from spatter, flash, and glare with protective screens or barriers.

IN SOME AREAS, protection from noise may be appropriate.

BE SURE protective equipment is in good condition. Also, wear safety glasses in work area **AT ALL TIMES.**

SPECIAL SITUATIONS

DO NOT WELD OR CUT containers or materials which previously had been in contact with hazardous substances unless they are properly cleaned.

DO NOT WELD OR CUT painted or plated parts unless special precautions with ventilation have been taken. They can release highly toxic fumes or gases.

Additional precautionary measures:

PROTECT compressed gas cylinders from excessive heat, mechanical shocks, and arcs; fasten cylinders so they cannot fall. **BE SURE** cylinders are never grounded or part of an electrical circuit.

REMOVE all potential fire hazards from welding area.

ALWAYS HAVE FIRE FIGHTING EQUIPMENT READY FOR IMMEDIATE USE AND KNOW HOW TO USE IT.

1. SAFETY

WARNINGS

CALIFORNIA PROPOSITION 65 WARNINGS

WARNING: Breathing diesel engine exhaust exposes you to chemicals known to the State of California to cause cancer and birth defects, or other reproductive harm.

- Always start and operate the engine in a well-ventilated area.
- If in an exposed area, vent the exhaust to the outside.
- Do not modify or tamper with the exhaust system.
- Do not idle the engine except as necessary.

For more information go to
www.P65warnings.ca.gov/diesel

WARNING:This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer.

(California Health & Safety Code § 25249.5 et seq.)

WARNING: Cancer and Reproductive Harm www.P65warnings.ca.gov

ARC WELDING CAN BE HAZARDOUS.
PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH.
KEEP CHILDREN AWAY.
PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.

Read and understand the following safety highlights. For additional safety information, it is strongly recommended you download free PDF of Standard ANSI Z49.1 from the American Welding Society.
<https://www.aws.org/library/doclib/AWS-Z49-2021.pdf>

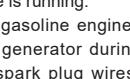
BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.

! FOR ENGINE POWERED EQUIPMENT.

- 1.a. Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.

1.b. Operate engines in open, wellventilated areas or vent the engine exhaust fumes outdoors.

1.c. Do not add the fuel near an open flame welding arc or when the engine is running. Stop the engine and allow it to cool before refueling to prevent spilled fuel from vaporizing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.



1.d. Keep all equipment safety guards, covers and devices in position and in good repair. Keep hands, hair, clothing and tools away from Vbelts, gears, fans and all other moving parts when starting, operating or repairing equipment.

1.e. In some cases it may be necessary to remove safety guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.

1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.

1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.

1.h. To avoid scalding, do not remove the radiator pressure cap when the engine is hot.

! ELECTRIC AND MAGNETIC FIELDS MAY BE DANGEROUS

2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines

2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.

2.c. Exposure to EMF fields in welding may have other health effects which are now not known.

2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:

2.d.1. Route the electrode and work cables together - Secure them with tape when possible.

2.d.2. Never coil the electrode lead around your body.

1. SAFETY

! ARC RAYS CAN BURN.

2.d.3. Do not place your body between the electrode and workcables. If the electrode cable is on your right side, the work cable should also be on your right side.

2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.

2.d.5. Do not work next to welding power source.

! ELECTRIC SHOCK CAN KILL.

3.a. The electrode and work (or ground) circuits are electrically "hot" when the welder is on. Do not touch these "hot" parts with your bare skin or wet clothing.

Wear dry, hole-free gloves to insulate hands.

3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.

In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:

- Semiautomatic DC Constant Voltage (Wire) Welder.
- DC Manual (Stick) Welder.
- AC Welder with Reduced Voltage Control.

3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically "hot".

3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.

3.e. Ground the work or metal to be welded to a good electrical (earth) ground.

3.f. Maintain the electrode stinger, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.

3.g. Never dip the electrode in water for cooling.

3.h. Never simultaneously touch electrically "hot" parts of electrode stingers connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.

3.i. When working above floor level, use a safety belt to protect

yourself from a fall should you get a shock.

3.j. Also see Items 6.c. and 8.

4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Welding shield and filter lens should conform to ANSI Z87.1 standards.

4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.

4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.

! FUMES AND GASES CAN BE DANGEROUS.

5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases. When welding,

keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep fumes and gases away from the breathing zone. When welding hardfacing (see instructions on container or SDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and within applicable OSHA PEL and ACGIH TLV limits using local exhaust or mechanical ventilation unless exposure assessments indicate otherwise. In confined spaces or in some circumstances, outdoors, a respirator may also be required. Additional precautions are also required when welding on galvanized steel.

5.b. The operation of welding fume control equipment is affected by various factors including proper use and positioning of the equipment, maintenance of the equipment and the specific welding procedure and application involved. Worker exposure level should be checked upon installation and periodically thereafter to be certain it is within applicable OSHA PEL and ACGIH TLV limits.

5.c. Do not weld in locations near chlorinated hydrocarbon vapors coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors to form phosgene, a highly toxic gas, and other irritating products.

5.d. Shielding gases used for arc welding can displace air and cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.

5.e. Read and understand the manufacturer's instructions for this equipment and the consumables to be used, including the Safety Data Sheet (SDS) and follow your employer's safety practices. SDS forms are available from your welding distributor or from the manufacturer.

5.f. Also see item 1.b.

1. SAFETY

WELDING AND CUTTING
SPARKS CAN CAUSE
FIRE OR EXPLOSION.

CYLINDER MAY
EXPLODE IF DAMAGED.

6.a. Remove fire hazards from the welding area. If this is not possible, cover them to prevent the welding sparks from starting a fire. Remember that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.

6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to "Safety in Welding and Cutting" (ANSI Standard Z49.1) and the operating information for the equipment being used.

6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.

6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even though they have been "cleaned". For information, purchase "Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances", AWS F4.1 from the American Welding Society (see address above).

6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.

6.f. Sparks and spatter are thrown from the welding arc. Wear oil free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.

6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate circuits. This can create fire hazards or overheat lifting chains

or cables until they fail. 6.h. Also see item 1.c.

6.i. Read and follow NFPA 51B "Standard for Fire Prevention During Welding, Cutting and Other Hot Work", available from NFPA, 1 Batterymarch Park, PO box 9101, Quincy, MA 022690-9101.

6.j. Do not use a welding power source for pipe thawing.

7.a. Use only compressed gas cylinders containing the correct shielding gas for the process used and properly operating regulators designed for the gas and pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.

7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.

7.c. Cylinders should be located:

- Away from areas where they may be struck or subjected to physical damage.
- A safe distance from arc welding or cutting operations and any other source of heat, sparks, or flame.

7.d. Never allow the electrode, electrode stinger or any other electrically "hot" parts to touch a cylinder.

7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.

7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.

7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-I, "Precautions for Safe Handling of Compressed Gases in Cylinders," available from the Compressed Gas Association, 14501 George Carter Way Chantilly, VA 20151.

FOR ELECTRICALLY
POWERED EQUIPMENT.

8.a. Turn off the power using the disconnect switch at the fuse box before working on the equipment.

8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer's recommendations.

8.c. Ground the equipment following the U.S. National Electrical Code and the manufacturer's recommendations.

1. SAFETY

Read the entire installation section before you start the installation.

INSTALLATION

WARNING

ELECTRIC SHOCK can kill.

- Only qualified personnel should perform this installation.
- Only personnel reading and understanding the MIG-135 Operator's Manual should install and operate this equipment.
- The machine must be plugged into a grounded receptacle per national, local, or other applicable electrical codes.

The MIG-135 power switch should be in the OFF("O") position when installing the work cable and gun and connecting the power cord to input power.

SELECT SUITABLE LOCATION

Locate the MIG-135 in a dry place with free clean air circulation to minimize the chance of dirt accumulation that can block air passages and cause overheating.

STACKING

MIG-135 cannot be stacked.

ТИЛТИНГ

The machine should be placed on a secure, level surface or a recommended cart. The equipment may topple over if this requirement is not followed.

TECHNICAL SPECIFICATIONS: MIG-135

INPUT-SINGLE PHASE ONLY					
Standard Voltage / Frequency		Input Current			
220V±10% 50/60Hz		$I_{1\max}=28A$ $I_{1\text{eff}}=12.5A$			
110V±10% 50/60Hz		$I_{1\max}=56A$ $I_{1\text{eff}}=25A$			
RATED OUTPUT-DC ONLY					
Voltage	Mode	Duty Cycle	Current	Volts at Rated Current	
220V	GMAW (MIG)	20%	135A	20.8V	
		60%	78A	17.9V	
		100%	60A	17V	
	GTAW (TIG)	20%	135A	15.4V	
		60%	78A	13.1V	
		100%	60A	12.4V	
	SMAW (STICK)	20%	135A	25.4V	
		60%	78A	23.1V	
		100%	60A	22.4V	
110V	GMAW (MIG)	20%	135A	20.8V	
		60%	78A	17.9V	
		100%	60A	17V	
	GTAW (TIG)	20%	135A	15.4V	
		60%	78A	13.1V	
		100%	60A	12.4V	
	SMAW (STICK)	20%	135A	25.4V	
		60%	78A	23.1V	
		100%	60A	22.4V	
OUTPUTRANGE					
Voltage	Mode	Open Circuit Voltage	Welding Current Range	Welding Voltage Range	
220V	GMAW	56V	20A~135A	15V~20.8V	
			20A~135A	20.8V~25.4V	
			20A~135A	10.8V~15.4V	
110V	GMAW		20A~135A	15V~20.8V	
			20A~135A	20.8V~25.4V	
			20A~135A	10.8V~15.4V	
OTHER PARAMETERS					
Machine	Power Factor	Efficiency	Protection Class	Insulation Class	
MIG-135	0.7	≥80%	IP21S	F	
PACKING DIMENSIONS					
Machine	Length	Width	Height	Weight	
MIG-135	12.99"	5.91"	9.37"	9lb	
	330mm	150mm	238mm	4.1Kg	
TEMPERATURE RANGE					
Operating Temperature Range		Storage Temperature Range			
-10°C ~ +40°C (-14°F~104°F)		-20°C ~ +55°C (-4°F~131°F)			

1. SAFETY

SAFETY PRECAUTIONS

Read entire operation section before operating the WIRE FEEDER WELDER.

⚠ WARNING

ELECTRIC SHOCK can kill.

- Do not touch electrically live parts such as output terminals or internal wiring.
- Insulate yourself from the work and ground.
- Always wear dry insulating gloves.

FUMES AND GASES can be dangerous.

- Keep your head out of fumes.
- Use ventilation or exhaust to remove fumes from breathing zone.

WELDING SPARKS

can cause fire or explosion

- Keep flammable material away.
- Do not weld on closed containers.

ARC RAYS can burn eyes and skin.

Wear eye, ear and body protection.

COMMON WELDING ABBREVIATIONS

GMAW (MIG/MAG)

Gas Metal Arc Welding

SMAW(STICK)

Shielded Metal Arc Welding

GTAW(TIG)

Gas Tungsten Arc Welding

FCAW(INNERSHIELD OR OUTSHIELD)

Flux-Cored Arc Welding

PRODUCT DESCRIPTION (PRODUCT CAPABILITIES)

This compact, portable wire feed welder offers versatile capabilities, including, flux-cored (FCAW), stick welding (SMAW), and DC lift TIG welding (GTAW) on mild steel and stainless steel.

MIG Welding requires shielding gas to protect the weld pool during cooling, sourced locally based on the material. It's ideal for thinner materials, providing a clean finish, particularly for automotive body panels.

Self-Shielded Flux-Cored Welding eliminates the need for additional shielding gas, using flux additives in the wire to protect the weld. It's effective for medium to thicker materials and works well on painted or rusty surfaces, making it suitable for outdoor use, though the finish may not be as refined as MIG welding.

Stick Welding (SMAW) is portable and versatile, allowing for welding in various positions. It's effective for thicker materials and outdoor environments, accommodating various electrodes.

DC Lift TIG Welding (GTAW) requires a lift TIG torch with a gas valve for optimal performance. It excels in high-quality, precise welds on thin materials, providing excellent control. The machine lacks a built-in gas solenoid, requiring manual gas flow management. The arc is initiated with a lift arc technique for clean starts, enhancing efficiency and weld quality in precision applications.

2. INSTALLATION

2.1 Accessories

① Welding Wires

② Work Clamp

③ Electrode Holder

④ Contact Tips(2 Pcs)

⑤ MIG TORCH

⑥ MIG 135 Plus Welder

⑦ 110V to 220V Voltage Converter Cable

2.2 Controls And Operational Features

① Diameter Button / 2T 4T Button

② LED Digital Display

③ Inchng Button

④ Voltage / Inductance Adjustment Knob

⑤ Current Adjustment / Function Selection Knob

⑥ Mig Torch Socket

⑦ Negative Output Terminal

⑧ Control Switch Socket

⑨ Positive Output Terminal

⑩ Wire Spool Spindle and Brake

⑪ Wire Feeder & Components

① Power Switch

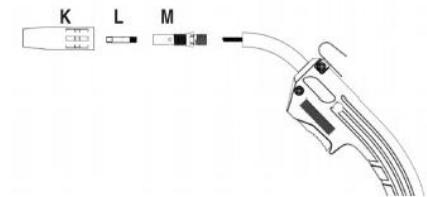
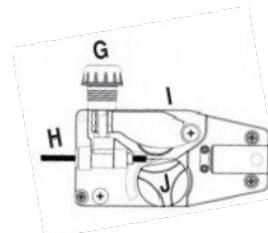
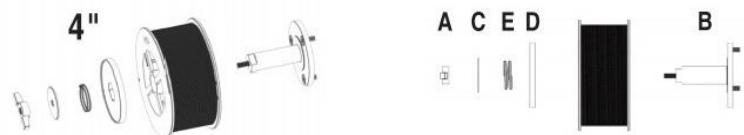
② Input Power Cable

③ Fan

④ Ground Screw

2.3 Installing the MIG Gun Assembly

Connect the standard gun to the Euro Torch Connector on the front of the welder. Make sure the gun connector is fully inserted into the wire drive system, then tighten the thumbscrew to secure it in place.




2.4 Installing the Welding Wire

ENSURE GAS AND ELECTRICAL SUPPLIES ARE DISCONNECTED. Before proceeding, remove the nozzle and the contact tip from the gun.

WARNING: ELECTRIC SHOCK CAN KILL! Always turn the Power SWITCH OFF and unplug the welder's **INPUT POWER CABLE** from the AC power source before installing wire. When the gun trigger is depressed, the drive rolls, spool of wire, wire being fed, and electrode are all electrically live (hot).

Installing 4-Inch Spool(See Figure For Part Identification)

- Open the access panel.
- Remove the nut(A),nut washer(C),spring(E),and spool spacer(D).
- Remove the outer wrapping from the spool of wire and then find the leading end of the wire (it goes through a hole in the outer edge of the spool and is bent over the spool edge to prevent the wire from unspooling)but do not unhook it yet.
- Place the spool on the WIRE SPOOL SPINDLE so that the wire unspools from the bottom, and the spool will rotate counterclockwise.
- Place the spool spacer,spring,nut washer and nut back.
- Proceed to the "FEEDING WIRE THROUGH THE MIG TORCH" instructions below

2.5 Feeding Wire Through the MIG Gun:

FIGURE A.1

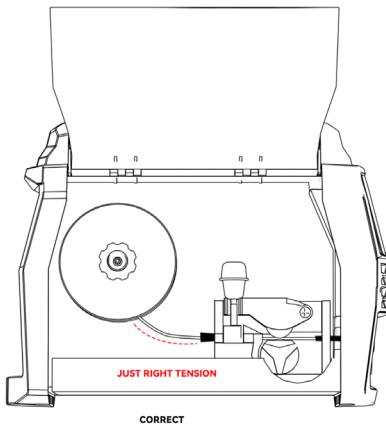
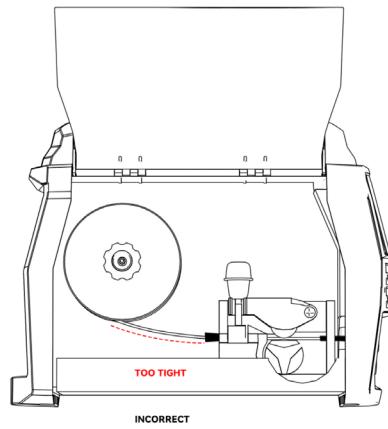



FIGURE A.2

Fixing the Wire Spool and Adjusting the Nut

Unhook the wire and hold the wire end and the wire spool in one hand. Use the other hand to tighten the nut (A) to an appropriate degree so that when the wire spool is released, it won't spin freely and unwind the wire. If the nut is tightened too much, it may lead to unstable wire feeding. If it's too loose, the wire will straighten freely from the wire spool, making a mess inside the equipment.

Trimming the Wire End

While holding the wire in place, use wire cutters to cut off the bent end of the wire, leaving only a straight end.

Inserting the Wire and Operating the Drive Roller Pressure Arm

Hold the wire end in one hand and pull the pressure arm adjustment knob (G) towards you to release the drive roller pressure arm (I). Lift the drive roller pressure arm away from the drive roller, then insert the leading end of the wire into the inlet guide tube (H). Push the wire across the drive roller (J) and into the torch assembly for approximately six inches.

Aligning the Wire and Fixing the Pressure Arm

Align the wire in the inner groove of the drive roller, and then let the drive roller pressure arm drop onto the drive roller. Pull the pressure arm adjustment knob back over the pressure arm and turn it clockwise to tighten the pressure adjusting knob until the pressure roller applies enough force on the wire to prevent it from slipping out of the drive assembly.

Note: Excessive pressure will cause wire feeding problems and may even burn out the wire feed motor.

Releasing the Wire

Let go of the wire.

Removing the Nozzle and the Contact Tip

Remove the nozzle (K) and the contact tip (L) from the end of the torch assembly (M).

Connecting the Power and Adjusting the Panel Settings

Plug the welder's INPUT POWER CABLE into the AC power socket. Adjust the settings on the front panel according to the wire and workpiece sizes as per the setup chart on the inside door of the welding machine.

Feeding the Wire Through the Torch and Checking

Pull the trigger on the MIG torch to feed the wire through the torch assembly. Check whether the drive roller is slipping on the wire and increase the pressure on the pressure arm adjustment knob if necessary. When at least one inch of wire protrudes from the end of the torch, release the trigger.

Installing the Contact Tip and the Nozzle

Slide the contact tip (L) over the wire protruding from the end of the torch (M). Screw the contact tip into the end of the torch and tighten it firmly by hand.

Install the nozzle (K) on the torch assembly.

Trimming the Excess Wire

Cut off the excess wire that extends beyond the end of the nozzle.

Fine-Tuning the Wire Drive Pressure

Use the pressure arm adjustment knob (G) to fine-tune the wire drive pressure. Turn the pressure adjustment knob clockwise to increase the driving pressure until the wire can be fed smoothly without slipping.

Note: If too much pressure is applied, the wire will be crushed and wire feeding problems will occur. If too little pressure is applied, the wire will slip on the drive rolls and no wire will be fed.

Checking the Wire Feeding Pressure and Smoothness

When the driving pressure is set correctly, there should be no slippage between the wire and the drive roller. However, if an obstruction occurs along the wire feeding path, the wire should be able to slip on the drive roller.

2.INSTALLATION

You can check this by moderately squeezing the wire between two fingers as it comes out of the torch. If this stops the wire from feeding, increase the pressure until the wire can be fed through your fingers without any problem.

Double-Checking the Wire Spool Tension

When the wire feeding stops, the wire coming out of the wire spool will have some natural curls, but it should not relax to the extent that it becomes loose on the wire spool, that is, it should be ensured that the curled wire does not start to loosen on the wire spool due to excessive relaxation.

KEEP THE GUN STRAIGHT. WHEN FEEDING A NEW WIRE THROUGH THE LINER, MAKE SURE THE WIRE IS CUT CLEANLY (NO BURRS OR ANGLES) AND THAT AT LEAST 1" FROM THE END IS STRAIGHT (NO CURVES). FAILURE TO FOLLOW THESE INSTRUCTIONS COULD CAUSE DAMAGE TO THE LINER.

WHEN CHECKING THE CORRECT EXIT OF THE WIRE FROM THE GUN DO NOT BRING YOUR FACE NEAR THE GUN. YOU MAY RUN THE RISK OF BEING WOUNDED BY THE OUTGOING WIRE. DO NOT BRING YOUR FINGERS CLOSE TO THE FEEDING MECHANISM WHEN WORKING! THE ROLLS, WHEN MOVING, MAY CRUSH FINGERS. PERIODICALLY CHECK THE ROLLS. REPLACE THEM WHEN THEY ARE WORN AND COMPROMISE THE REGULAR FEEDING OF THE WIRE.

3.OPERATION

3.1 Performance Data Plate And Duty Cycle

On the machine, there is a plate that includes all the operating specifications for your new unit. The duty cycle rating of a welding machine defines how long the operator can weld and how long the welding machine must rest and be cooled. Duty cycle is expressed as a percentage of 10 minutes and represents the maximum welding time allowed. The balance of the 10-minute cycle is required for cooling.

For example, a welding machine has a duty cycle rating of 30% at the rated output of 90A. With that welding machine, you can weld at 90 A output for three (3) minutes out of every 10 min with the remaining seven (7) minutes required for cooling.

The duty cycle of your new welding machine can be found on the data plate affixed to the machine. The picture below shows that the "X" row lists duty cycle percentages while the "I2" row lists the amp draw corresponding to the duty cycle. Various duty cycles at other amperages are listed on your data plate.

ANDELI Inverter DC Welding Machine									
Model:MIG-135									
		U ₁ =110V				U ₁ =220V			
				20A/15V~135A/20.8V		20A/15V~135A/20.8V			
X	20%	60%	100%	X	20%	60%	100%		
		I ₂	135A	78A	60A	I ₂	135A	78A	60A
		U ₂	20.8V	17.9V	17V	U ₂	20.8V	17.9V	17V
U ₁ =110V									
				20A/20.8V~135A/25.4V		20A/20.8V~135A/25.4V			
X	20%	60%	100%	X	20%	60%	100%		
		I ₂	135A	78A	60A	I ₂	135A	78A	60A
		U ₂	25.4V	23.1V	22.4V	U ₂	25.4V	23.1V	22.4V
		U ₁ =110V		I _{1max} =56A		I _{eff} =25A			
1~50/60Hz		U ₂ =220V		I _{1max} =28A		I _{eff} =12.5A			
Protection grade:IP21S				Insulation grade:F		Cooling:air-cool			

3.2 Internal Thermal Protection

If you exceed the welding machine duty cycle, the thermal protection system will engage, shutting off all welding current output. After cooling, the thermal protector will automatically reset, and the welding functions can resume. The user needs to know it is the expected behavior of this machine. However, it would be best if you waited at least ten minutes after the thermal protector engages before resuming welding. You must do this even if the thermal protector resets itself before the ten minutes is up, or you may experience less than specified duty cycle performance.

CAUTION: DO NOT REGULARLY EXCEED THE DUTY CYCLE OR DAMAGE TO THE WELDER CAN RESULT.

3.3 Welding Preparation

The key to making a good weld is preparation. It includes studying the process and equipment and practicing welding before attempting to weld the finished product. An organized, safe, ergonomic, comfortable, and well-lit work area should be prepared for the operator. The work area should be free of all flammables, with a fire extinguisher and a bucket of sand available to smother potential possible fires.

To properly prepare for welding with your new welder, it is necessary to:

Read the safety precautions at the front of this manual.

- Prepare an organized, well-lit work area.
- Protect the eyes and skin of the operator and bystanders.
- Attach the work clamp to the bare metal to be welded, ensuring good contact.
- When MIG/MAG, Flux-cored Welding, ensure that the wire-roller groove in the roller corresponds to the diameter and type of wire used.
- Plug the machine into a suitable power outlet, and recommend NEMA6-50.
- Completely open the gas cylinder valve. Adjust the gas pressure regulator to the correct flow rate. (Not applicable to Stick welding / SMAW).

EXPOSURE TO A WELDING ARC IS EXTREMELY HARMFUL TO THE EYES AND SKIN. PROLONGED EXPOSURE TO A WELDING ARC CAN CAUSE BLINDNESS AND BURNS. NEVER STRIKE AN ARC OR BEGIN WELDING UNLESS YOU ARE ADEQUATELY PROTECTED. WEAR FIRE RESISTANT WELDING GLOVES, HEAVY LONG SLEEVED SHIRT, CUFFLESS PANTS; HIGH TOPPED SHOES AND A WELDING HELMET.

3.4 Welding Wire Selection

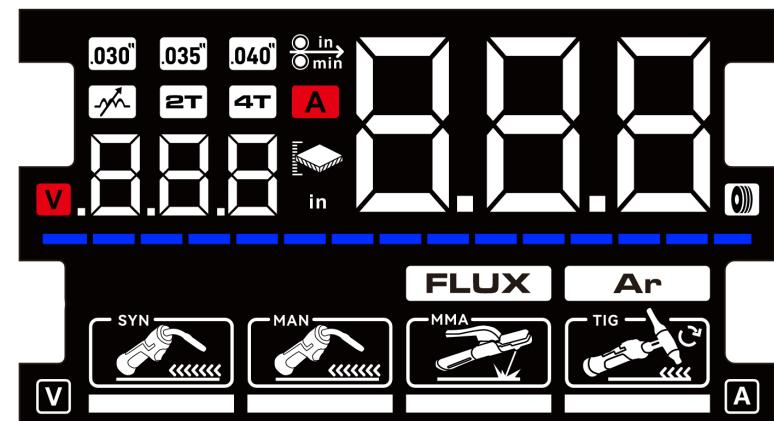
This welder can work with gasless flux-cored wire with a diameter ranging from 0.024 inches to 0.04 inches (0.6 mm to 0.9 mm).

3.5 Wire Feed Roller Selection

Select the appropriate K-groove roller based on the wire type and diameter to ensure smooth feeding and optimal performance.

Type	Size	Suitable Welding Wire
K-Groove Roller	.030"/.035"	0.8/0.9mm

3.6 Gas Selection


Select the appropriate shielding gas based on the material and welding process being used. Below is a brief introduction to the gas requirements for each mode:

Type	MATERIAL	GAS
MIG/MAG Pulse On/Dual Pulse		
Flux-cored	Steel	No Gas
	Steel	100% Argon
Stick	Steel	No Gas

3.7 Setup for Home Menu

After powering on the machine and the startup screen appears, the "Home Menu" will be lit. On this interface, users can choose the welding mode (Flux-cored Welding, Tungsten Inert Gas Welding (TIG), Stick Welding) and adjust the machine's basic settings.

Note: The machine is tested before shipment. When restarted, it will automatically return to the screen used prior to shut-down. To access the main menu in this case, press the Menu button on the panel.

In the Home Menu, each welding process features specific parameter icons on the screen. These icons represent various adjustable settings. For a clear understanding of these settings, refer to the "Welding Processes and Parameter Icon Reference Table". This table helps users quickly identify and adjust the parameters for each welding process.

Welding Processes and Parameter Icon Reference Table

Parameter	SYN	MAN	MMA	TIG
Diameter Selection	✓	✓	✓	✓
Torch Trigger Selection	✓	✓	-	-
inductance	✓	✓	-	-
2T 4T	✓	✓		

3.8.1 Basic Connections

Connect the MIG welding torch to the Euro Torch Connector on the machine.

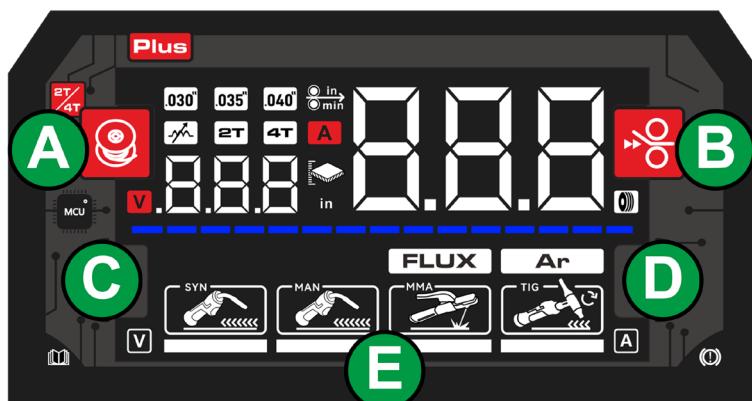
Connect the welding clamp to the negative (+) output terminal, making sure it is firmly attached to the clean, bare metal part of the work piece (avoid rust or paint).

Load the wire spool into the chassis and feed the wire into the welding torch through the wire feeder (see the "Installing the Welding Wire" section).

Press the trigger of the welding torch or hold the value adjustment knob to feed the wire through the welding torch.

Turn on the machine power, select the MIG welding process on the home menu page, and then enter the MIG parameter settings.

Select the welding type: SYNERGY, | Manual operation.


Select the wire diameter (0.03 inches to 0.04 inches).

Set the welding torch trigger operation mode to 2T/4T.

Select the standard MIG welding torch mode, pull the welding torch control switch to feed the wire, and then start welding.

3.8.2 Overview of the Panel Buttons for Metal Inert Gas (MIG) Welding

This section provides an overview of the key function parameters for Metal Inert Gas (MIG) welding in welding tasks.

1.A.Diameter Button / 2T 4T Button

For switching the diameter of welding wire: .030"/.035"/.040". / Press on for 3S to enter and exit 2T/4T selection.

2.B.Inching Button

For manual wire feeding, the longer you press the button, the faster the speed is.

3.C.Voltage / Inductance Adjustment Knob

Rotate the knob to adjust welding voltage, inductance value; long press 3S to enter inductance adjustment interface(only in FLUX mode). Choose flux Synergy mode, just short press it to switch to the flux pulse mode.

4.D.Current Adjustment/Function Selection Knob

Press the knob to select the main mode

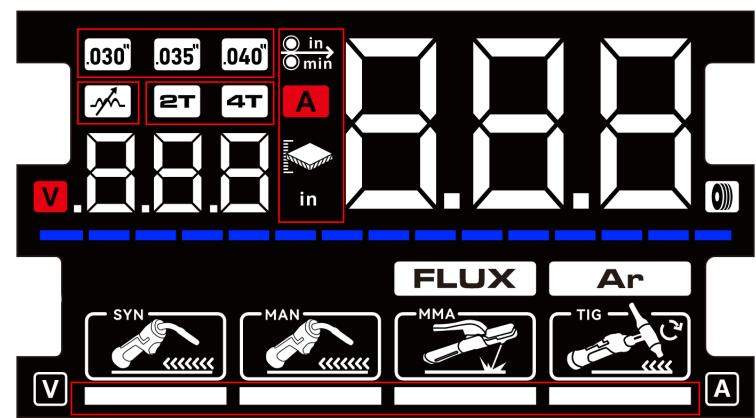
MMA Lift Tig SYN mode: Rotate the knob to adjust welding current

MAN mode: Rotate the knob to adjust the welding current

5.E.LED Digital Display

When switching the welding mode, the corresponding indicator will light up.

When switching the wire diameter, the corresponding indicator will light up.


When pressing the Inching button, the indicator will light up

When switching the parameter, the corresponding indicator will light up. (On MMA mode, only the indicator of amperage and voltage can light up; On lift TIG mode, only the indicator of amperage and voltage can light up; On Flux core (SYN) mode, only the indicator of current and voltage can light up. On Flux core (MAN) mode, when rotating the current adjustment knob, only the indicator of wire feeding speed and voltage can light up, after rotated, only the indicator of current and voltage can light up.)

The protection indicator will turn on when the machine is overheated or over-current/low voltage. When the indicator turns off, the machine will work normally again.

3.8.3 Overview of Basic MIG Parameters

This section provides an overview of basic MIG parameters for welding tasks:

3.OPERATION

1.Wire Diameter Selection: Select the appropriate wire diameter based on the material thickness and welding application. The available options usually include wire diameters ranging from 0.6 mm to 1.0 mm (0.024 inches to 0.04 inches).

2.Torch Trigger Operation Selection: Choose between the 2T/4T torch operation modes.

3.Torch Selection: Switch between the standard MIG torch and the optional push-pull torch according to the specific welding application and the type of wire being used.

4.Wire Feed Speed and Current Display: Display the wire feed speed along with the corresponding current value to ensure the correct setup for stable welding.

5.Voltage Display: Display the set voltage as well as any fine-tuning adjustments. The smaller display will show the fine-tuned voltage value when adjustments are made.

6.Inductance Display: In welding methods such as MIG (Metal Inert Gas) welding, an appropriate inductance value can enable the molten droplets to transfer into the molten pool in a more ideal way, thus improving the weld quality.

3.8.4 Flux-cored Welding Parameters Recommendation

To achieve optimal welding results, it's crucial to select the appropriate settings for specific welding application. The table below provides recommended voltage, wire diameter, and wire feed speed values for various materials. Adjusting these parameters based on the material and wire type ensures efficient performance and high-quality welds.

Basic Flux-cored Welding Recommended Parameter Settings

Parameter	Voltage	Current	Wire feeding speed						
			0.030"/0.8	0.035"/0.9	0.040"/1.0				
0.047"	1.2mm	15V	20A	48"	1.22m	38"	0.97m	31"	0.79m
0.059"	1.5mm	15.3V	30A	73"	1.85m	59"	1.50m	48"	1.22m
0.071"	1.8mm	15.7V	40A	99"	2.51m	79"	2.01m	64"	1.63m
0.083"	2.1mm	16.2V	50A	124"	3.15m	100"	2.54m	81"	2.06m
0.094"	2.4mm	16.6V	60A	150"	3.81m	121"	3.07m	98"	2.49m
0.11"	2.7mm	17.1V	70A	175"	4.45m	141"	3.58m	114"	2.90m
0.12"	3.0mm	17.5V	80A	201"	5.11m	162"	4.11m	131"	3.33m
0.13"	3.3mm	18V	90A	226"	5.74m	182"	4.62m	148"	3.76m
0.14"	3.6mm	18.4V	100A	249"	6.32m	200"	5.08m	162"	4.11m
0.15"	3.9mm	18.8V	110A	274"	6.96m	221"	5.61m	179"	4.55m
0.16"	4.2mm	19.3V	120A	300"	7.62m	242"	6.15m	196"	4.98m
0.17"	4.5mm	19.7V	130A	325"	8.26m	262"	6.65m	212"	5.38m
0.19"	5.0mm	20V	135A	340"	8.64m	274"	6.96m	222"	5.64m

Note: these values serve as general guidelines, and actual welding performance may differ depending on variables such as material condition, environmental factors, and specific requirements of project requirements.

3.OPERATION

3.8.5 Flux Core (SYN) Welding Step

This section provides an overview of basic MIG parameters for welding tasks:

1.Torch Installation: Insert the MIG torch into the MIG torch socket and screw in clockwise. Install the torch control switch onto the panel switch socket.

2.Ground Clamp Installation: Connect the work clamp cord to positive(+) terminal.

3.Welding Wire Installation: Install the welding wire (Section 2.6 for details), and then turn on the power switch. The fan will start to work.

4.Mode Selection: Press the D knob to select SYN

5.Operation Instructions: Press the B button on the panel, the wire will feed automatically, the longer you press the button, the faster the speed will be. Or you can press the torch trigger until the wire extends to the nozzle. (The nozzle may need to be removed from the torch to allow this function.)

When wire feeding, keep the cable straight and make sure the wire is located on the drive roll groove and the feeding speed should be smooth. If the wire feeding speed is not smooth, adjust the tension of the drive roll.

6.Wire Diameter Selection: Press the A button on 0.030"/0.035"/0.040".

7.Set the Welding Current: Set the welding current with D knob.

8.Welding Technique Selection: Press the A button for 3s to enter and exit the 2T/4T interface, touch to select; Under 2T operation, the machine starts working after pressing the switch of torch, the machine stops welding when releasing the switch. Under 4T operation, press the button for the first time, it gives machine start-arc current, release the switch, current begins climbing to the normal welding current. Press the button again after the welding is finished, release the switch, machine stops working. Press the button 3s again to exit.

The wire feeding speed and voltage are matched in a synergistic manner. If you are not satisfied with the matching, you can set the C knob to adjust the voltage to achieve satisfactory welding results.

3.OPERATION

9.Inductance adjustment:If you want to adjust the arc hardness and softness.Press the C Knob for 3S to enter, rotate the knob to adjust the inductance value (-9.9 to +9.9), and press it again to exit.

10. Pulse function: When the interface is in gasless synergy mode, short press the C knob, at this time the blue progress bar shows accelerating flashing, and the gasless pulse mode starts .

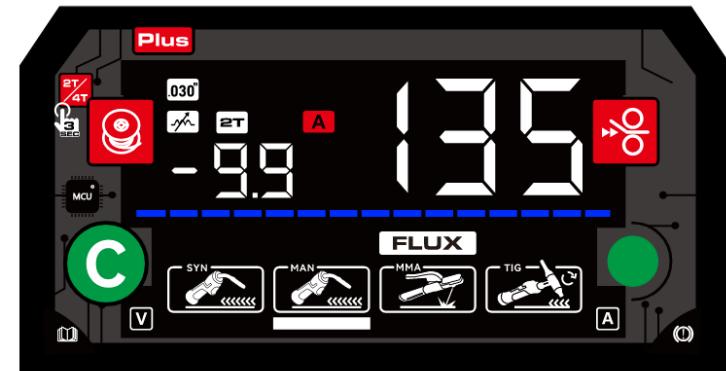
3.OPERATION

· The installation steps are consistent with the SYN mode

1.Wire Diameter Selection:Press the A button on .030'/.035"/.040".

2.Wire feeding speed: Set the feeding speed with the D knob.

3.Welding Voltage: Set the welding voltage with the C knob.


4.Welding Technique Selection:Press the A Button for 3s to enter and exit the 2T/4T interface, touch to select;Under 2T operation, the machine starts working after pressing the switch of torch, the machine stops welding when releasing the switch.Under 4T operation, press the button for the first time, it gives machine start-arc current, release the switch, current begins climbing to the normal welding current. Press the button again after the welding is finished, release the switch, machine stops working. Press the button 3 s again to exit.

NOTE: After setting, the digital display will revert back to current display

3.8.6 Flux Core (MAN) Welding Steps

This section provides an overview of basic MIG parameters for welding tasks:

5.Inductance adjustment:If you want to adjust the arc hardness and softness.Press the C Knob for 3S to enter, rotate the knob to adjust the inductance value (-9.9 to +9.9), and press it again to exit.

3.9 Set up for Stick Welding (SMAW)

3.9.1 Basic Connections

Remove the Wire Drive Polarity Lead from the Positive (+) Output and Negative (-) Output Terminal (Remove the MIG gun at the same time).

Check the electrode packaging to determine the recommended polarity and connect the electrode holder and work clamp to the Positive (+) or Negative (-) Output Terminal accordingly.

Place the electrode into the electrode holder firmly.

Ensure the work clamp has good contact with the workpiece on a clean, bare metal surface free of rust, paint, or coating. Turn the power source on and select the Stick welding process with Function Knob on the Home Menu Page.

Set the amperage with the Value Adjustment Knob.

Strike the electrode against the workpiece to create an arc and hold the electrode steady to maintain the arc. Hold the electrode slightly above the work, maintaining the arc while traveling at an even speed.

To finish the weld, break the arc by quickly snapping the electrode away from the workpiece. Wait for the weld to cool and carefully chip away the slag to reveal the weld metal below.

3.9.2 Polarity Setup for Stick Welding (SMAW): DCEP (Direct Current Electrode Positive):

Connect the electrode holder to the Positive (+) Output Terminal and the work clamp (connected to the workpiece) to the Negative (-) Output Terminal.

Recommended for most stick welding applications, as it provides deeper penetration on thicker materials.

3.9.3 Polarity Setup for Stick Welding (SMAW): DCEN (Direct Current Electrode Negative):

Connect the electrode holder to the Negative (-) Output Terminal and the work clamp to the Positive (+) Output Terminal. Recommended for welding thin metals or when required by specific electrode types.

Electrode Recommendations

Electrode	Polarity	Usage
E7018,E4013,E6013	DCEP	This electrode is best for use with clean, bare steel and is suitable for moderate penetration.
E4013,E6013	DCEN	It is applicable to typical American acidic electrodes. The deposited metal has good tensile strength and is suitable for all-position welding.

However, various electrodes require a different polarity for optimum results. Please follow the electrode manufacturer's recommendation on the correct polarity.

3.9.4 Overview of Basic Stick Parameters

Take the acidic electrode as an example.

1.Torch Installation:

·Connect the electrode lead to the positive(+)output terminal on the front of the machine.

·Connect the work clamp lead to the negative(-)output terminal on the front of the machine.

2.Power on:Turn on the power switch, and the fan will work.

3.Mode Selection:Press the D knob to select MMA

4.Parameter adjustment: Set the welding amperage (20~135A) with the D knob.

The table below outlines optimal parameter settings based on electrode types, material thicknesses, and specific job requirements. These recommendations assist users in configuring their machine for maximum efficiency and weld quality.

Stick Welding Recommended Parameter Settings

Voltage	Electrode Type	Diameter	Amperage	Thickness									
				24ga	22ga	20ga	18ga	16ga	14ga	1/8"	3/16"	1/4"	3/8"
220V	6***	1/16" (1.6mm)	20~135A	/	/	28	33	36	45	/	/	/	/
		3/32" (2.4mm)		/	/	/	/	/	70	90	/	/	/
		1/8" (3.2mm)		/	/	/	/	/	/	105	120	135	/
110V	6***	1/16" (1.6mm)	20~135A	/	/	28	33	36	45	/	/	/	/
		3/32" (2.4mm)		/	/	/	/	/	70	90	/	/	/
		1/8" (3.2mm)		/	/	/	/	/	/	105	120	135	/

Selecting the appropriate welding current for the job is essential to prevent common welding defects and ensure a high-quality weld. Low current can result in difficulty striking and maintaining a stable arc, with the electrode tending to stick to the workpiece. This leads to shallow penetration and a rounded, weak weld profile.

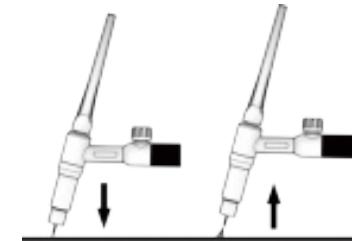
High current introduces risks such as excessive heat, which may burn through the base metal, cause undercut, and result in significant spatter buildup on the work surface.

After selecting the appropriate welding current, fine-tune additional parameters such as Arc Force and Hot Start. Proper adjustments of these settings, in alignment with the chosen current, will enhance arc stability, penetration, and overall weld quality.

3.10 Set Up for Lift Arc TIG Welding(GTAW)

3.10.1 Basic Connections

Setting up the Equipment for TIG Welding (GTAW): The TIG torch is not included with the machine. For optimal performance, we recommend using the additional ANDELI WP-17V-35 Lift TIG torch and Lanthanated Tungsten electrodes.


WARNING: TIG TORCH IS ALWAYS LIVE (ELECTRICALLY HOT). Use caution and ensure the TIG torch is not in contact or close to a conductive or grounded material.

- Remove the Wire Drive Polarity Lead from the Positive (+) Output and Negative (-) Output Terminals.
- Connect the TIG torch cable to the welder's Negative (-) Output Terminal.
- Connect the work cable connector to the welder's Positive (+) Output Terminal.
- Ensure the work clamp has good contact with the workpiece on a clean, bare metal surface free of rust, paint, or coating.
- Connect the TIG torch gas line to the gas regulator (use 100% Argon gas only). Turn on the gas at the regulator, check for gas flow, and adjust the flow rate as needed.
- Set the tungsten electrode to extend approximately 1/4 inch from the gas cup. Ensure you are using the correct size and type of tungsten electrode. Smaller electrodes are suitable for lower welding currents. The tungsten must have a sharpened tip for direct current (DC) welding.

- Put the TIG torch away from all conductive materials.
- Turn on the welder's power switch.
- Select the Lift TIG process with the Control Knob on the Home Menu Page.
- Open the gas valve on the TIG torch to start the gas flow. Set the flow rate to 20~30 CFH.
- Select material and tungsten diameter to match the project.
- Set the welding amperage through the Value Adjustment Knob.
- Turn the valve on the TIG torch to start the shielding gas flow.
- Initiate the welding arc with a lift arc technique:
 - Briefly touch the tungsten electrode to the workpiece.
 - Lift the electrode slightly, and the machine will automatically increase the voltage and current to establish the arc.

REMEMBER TO CLOSE THE VALVE ON THE GAS CYLINDER IMMEDIATELY AFTER ALL WELDING IS COMPLETED. Welding Tips:

- Always work with clean, dry, and well-prepared materials for best results.
- Hold the torch at a 45° angle to the workpiece, keeping the gas cup about 1/2" above the surface.
- Maintain smooth and steady torch movement throughout the weld to ensure consistent results.
- Avoid welding in drafty environments, as drafts can disrupt the shielding gas and cause porosity defects.
- Keep the wire and liner clean. Avoid using rusty or dirty wire, as it can affect weld quality.
- Do not bend or kink the welding torch cable, as this can restrict gas flow and damage the internal components.

3.10.2 TIG Torch Assembling

Assemble the TIG torch correctly to ensure proper shielding, arc stability, and optimal welding performance.

Here's step-by-step guidance for assembling the TIG torch:

Match Collet and Collet Body:

Collet (4): Holds the tungsten electrode in place within the Torch Head (6).

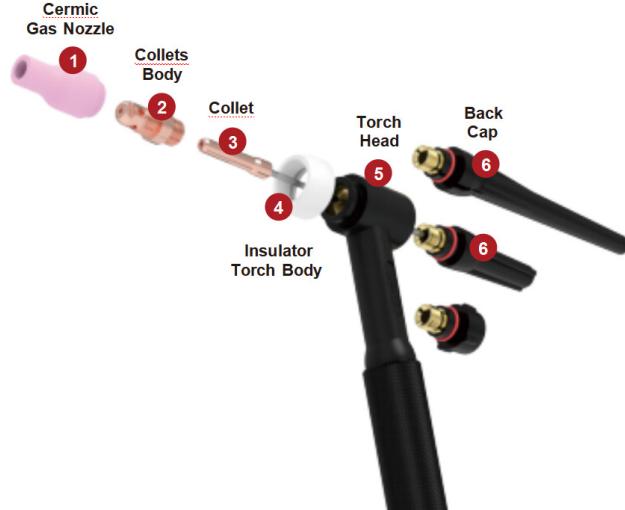
Thread Collet Body:

- Stubby Gas Lens (2): Functions as the Collet Body, providing enhanced gas coverage and flow.
- Screw the Stubby Gas Lens (2) into the Torch Head (6).

Ceramic Nozzle Selection:

Pyrex Glass Cup (1): Thread this nozzle onto the Stubby Gas Lens (2) for gas shielding and better visibility during welding.

Insert Collet and Electrode:


Insert the Collet (4) into the Stubby Gas Lens (2), then insert the tungsten electrode.

Secure Electrode:

Back Cap (7): Tighten to lock the tungsten electrode in place, ensuring that 1/8" to 1/4" of the tungsten protrudes from the Pyrex Glass Cup (1).

Additional Components:

- Temperature Resistant O-ring (3): Seals the gas flow in high-temperature areas, typically around the gas lens or torch head.
- Insulator Torch Body (5): Provides insulation around the Torch Head (6) to prevent overheating.

Here's step-by-step guidance for assembling the TIG torch:

Install the Collet Body:

Thread the Collet Body (2) into the Torch Head (5) securely.

Insert the Collet:

Place the Collet (3) inside the Collet Body. This holds the tungsten electrode.

Insert the Tungsten Electrode: Insert the tungsten electrode through the Collet (3), leaving 1/8" to 1/4" of the electrode extending from the gas nozzle.

Tighten with Back Cap:

Screw the Back Cap (6) onto the rear of the Torch Head (5) to lock the tungsten electrode in place.

Insert Collet and Electrode:

Insert the Collet (4) into the Stubby Gas Lens (2), then insert the tungsten electrode.

Attach Insulator and Gas Nozzle:

Place the Insulator Torch Body (4) over the Torch Head (5) to protect the assembly from heat. Thread the Ceramic Gas Nozzle (1) onto the Collet Body for proper shielding gas coverage during welding.

TIG Electrodes Specification Reference Table

Material	Thickness (inch/mm)	Tungsten Diameter	Tungsten Type	Filler Metal	Ceramic	Gas Flow (CFH)	Amperage Range (A)
Carbon Steel	1/16"~1/8" (1.5~3.0mm)	1.6mm (1/16")	2% Thoriated (Red) 2% Lanthanated (Blue) 2% Ceriated (Gray)	ER70S-6	#5~#6	15~20 CFH	20~135A
Stainless Steel	1/16"~1/8" (1.5~3.0mm)	1.6mm (1/16")	2% Thoriated (Red) 2% Lanthanated (Blue) 2% Ceriated (Gray) Rare Earth (Purple)	ER308/ER3 16	#5~#6	15~20 CFH	20~135A

3.10.3 Overview of Basic TIG Parameters

This section provides an overview of basic TIG parameters for welding tasks:

1.Torch Installation:

The TIG welding torch should be connected to the negative(-)output terminal, and the work clamp lead to the positive(+)output terminal.

2.Power on: Turn on the power switch, and the fan will work.

3.Setting of the Pressure Reducer: Turn on the gas regulator on the gas cylinder, the gas pressure is shown on the gauge.

4.Mode Selection: Press the D knob to select TIG

5.Parameter adjustment: Set the welding amperage (20~135A) with the D knob.

3.10.4 TIG Welding Parameters Recommendation

Proper configuration of welding parameters is critical for achieving optimal TIG welding results. This section details recommended settings based on material type, thickness, and tungsten diameter. This section provides recommended settings based on material type, thickness, and tungsten diameter. Following these guidelines ensures accurate heat control, improved weld quality, and enhanced performance.

TIG Welding Recommended Parameter Settings

Voltage	Electrode Type	Diameter	Amperage	Thickness									
				24ga	22ga	20ga	18ga	16ga	14ga	1/8"	3/16"	1/4"	3/8"
220V	Steel	1/16" (1.6mm)	20~135A	18	20	25	40	50	65	95	/	/	/
		3/32" (2.4mm)		18	20	25	40	50	65	95	135	/	/
	Stainless Steel	1/16" (1.6mm)		18	20	25	40	50	65	95	/	/	/
		3/32" (2.4mm)		18	20	25	40	50	65	95	135	/	/
110V1	Steel	1/16" (1.6mm)	20~135A	18	20	25	40	50	65	95	/	/	/
		3/32" (2.4mm)		18	20	25	40	50	65	95	/	/	/
	Stainless Steel	1/16" (1.6mm)		18	20	25	40	50	65	95	/	/	/
		3/32" (2.4mm)		18	20	25	40	50	65	95	/	/	/

The amperage settings outlined are aligned with material thickness, type, and tungsten diameter. These recommendations serve as a reference to assist users in setting up their welding parameters. Users should adjust the settings to their specific welding conditions and needs to ensure the best possible results.

4.1 General Maintenance

This welder has been engineered to need minimal service providing that a few very simple steps are taken to properly maintain it.

- Keep the cabinet cover closed at all times unless the wire needs to be changed or the driving pressure needs adjusting.
- Keep all consumables (contact tips, nozzles, and liner) clean and replace them when necessary. See "Consumable Maintenance" (below) and "Troubleshooting" (page 27) for detailed information.
- Replace INPUT POWER CABLE, ground cable, work clamp, or gun assembly when damaged or worn.
- Avoid directing grinding particles towards the welder. These conductive particles can build up inside the machine and cause severe damage.
- Periodically clean dust, dirt, grease, etc. from your welder. Every six months or as necessary, remove the side panels from the welder and use compressed air to blowout any dust and dirt that may have accumulated inside the welder.
- If available, use compressed air to clean the liner periodically, especially when changing wirespools

WARNING: DISCONNECT FROM POWER SOURCE WHEN CARRYING OUT THIS OPERATION.

The wire feed drive roller could wear out during service. Therefore, replacing the drive roller is required under specific circumstances. For example, if the idler roller and the wire feed drive roller make contact when the correct size of welding wire in the groove of the drive roller, the wire feed drive roller must be replaced immediately.

Check all cables periodically. They must be in good condition and not cracked.

WARNING: ELECTRIC SHOCK CAN KILL! Be aware that the ON/OFF SWITCH, when OFF, does not remove power from all internal circuitry in the welder. To reduce the risk of electric shock, always unplug the welder from its AC power source and wait several minutes for electrical energy to discharge before removing side panels.

4.2 Consumable Maintenance

IT IS VERY IMPORTANT TO MAINTAIN THE CONSUMABLES TO AVOID THE NEED FOR PREMATURE REPLACEMENT OF THE GUN ASSEMBLY.

MAINTAINING THE CONTACT TIP:

The purpose of the CONTACT TIP is to transfer welding current to the welding wire while allowing the wire to pass through it smoothly.

Always use a contact tip stamped with the same diameter as the wire.

· If the wire burns back into the contact tip, remove it from the gun and clean the hole running through it with an oxygen-acetylene torch tip cleaner or tip drill. If the burned-back wire cannot be removed, the contact tip must be replaced.

· A failure mode of the contact tip is a worn-out hole with enlarged hole size. A worn-out contact tip usually results in unstable arc characteristics and difficult arc starting.

CAUTION: KEEP THE GAS NOZZLE CLEAN!

During the welding, spatter and slag can build up inside the gas nozzle. The user must clean the gas nozzle periodically. Failure to clean and/or replace the gas nozzle in a timely fashion could cause damage to the front end of the gun assembly, which is not replaceable. The inaction results may require the replacement of the entire gun assembly.

Failure to keep the nozzle adequately cleaned can result in the following problems:

If the spattering buildup inside the gas nozzle bridges the gas nozzle and the welding torch, it allows the welding current to pass through the gas nozzle beside the contact tip. This phenomenon causes erratic welds and less weld penetration. In addition, it leads to an overheating of the end of the welding gun and, in turn, damages the welding gun.

TESTING FOR A SHORTED NOZZLE

Arcing between the nozzle and the workpiece means the nozzle is shorted.

Unplug the AC power source, and use an ohmmeter to measure the resistance between the gas nozzle and the contact tip. If the resistance is not unlimited, the nozzle is shorted. Please clean or replace the gas nozzle.

5.TROUBLESHOOTING

HOW TO USE TROUBLESHOOTING GUIDE

This Troubleshooting Guide is provided to help you locate and fix possible machine malfunctions. Follow the three-step procedure listed below.

Step 1. LOCATE PROBLEM (SYMPTOM).

Look under the column labeled "PROBLEM (SYMPTOM)". This column describes the sign that the machine is showing. Find the listing that best describes the symptom that the machine is exhibiting.

OBSERVE ALL SAFETY GUIDELINES DETAILED THROUGHOUT THIS MANUAL

PROBLEM	POSSIBLE CAUSE	COURSE OF ACTION
OVER HOT	Welding current exceeds machine's capacity	Reduce welding current or contact support for assistance.
Frequent circuit breaker Trips.	Machine is drawing too much amperage due to use of larger size electrode.	Use a smaller electrode.
	Machine is not the only piece of electrical equipment on the circuit.	Make sure the welder is on a dedicated circuit or is the only equipment plugged into a circuit.
	Circuit breaker is incorrect/insufficient for use with this machine.	Verify that the circuit breaker for the circuit is a 30A breaker for 120V and 20A for 240V. If it is not, have a qualified electrician install the proper breakers.
Screen's OFF, No output power, Fan not operating.	No input power.	Connect machine to proper input power source.
		Verify that circuit breaker has not been tripped in your main power panel. Reset if needed.
		Wire loose connection.
	POWER SWITCH is OFF.	Ensure POWER SWITCH (rear) is in the ON position.
Screen is OFF, but fan is operating	Power supply issue.	Check and secure power connections to display/control board.
	Control board malfunction	Contact our support team for further assistance and repair.

5.TROUBLESHOOTING

MIG WELDING ISSUES

PROBLEM	POSSIBLE CAUSE	COURSE OF ACTION
No arc or wire feed. Screen's on, Fan operates normally (can be heard, auto start/stop)	Gun trigger is not being pulled or is not making contact.	Ensure the trigger is fully pulled. Inspect and replace the trigger switch if it is faulty.
	Incorrect gun modeselected (Spool gun vs. Standard).	Check and adjust the gun mode settings to match the correct gun type.
	Exceeded duty cycle; thermal protection engaged	Allow the machine to cool down. Stay within the machine's duty cycle to avoid overheating.
	Insufficient air flow causing machine to overheat before reaching duty cycle.	Ensure proper ventilation and airflow around the machine. Check the fan for blockages or malfunctions.
	Wire Feed Motor Fault.	Inspect the wire feed motor and connections. Replace if necessary.
	Control Board Malfunction.	Inspect the control board for damage. Contact our support team for further assistance and repair.
Feed motor operates but wire will not feed.	Blocked or Worn Contact Tip.	Clean or replace the contact tip. Ensure it's the right size for the wire.
	Insufficient feed drive roller pressure.	Adjust drive roller pressure.
	Burr on end of wire.	Re-cut wire so it is square with no burr.
	Liner blocked or damaged.	Clear with compressed air or replace liner.
Wire feeds but no arc.	Despooler tension too high.	Adjust despooler tension.
	Incorrect polarity setting.	Verify polarity is correct for the type of wire used. For flux-cored wire, set to DCEN; for solid wire, set to DCEP.
	Poor ground connection.	Ensure the ground clamp is securely attached to clean, bare metal.
	No gas flow (if MIG welding with solid wire).	Check the gas flow and ensure the cylinder is not empty and the regulator is set properly.
	Settings such as voltage or wire feed speed may be incorrect, preventing arc formation.	Adjust the voltage, wire feed speed, and other arc settings to match the material and process.
	Control board malfunction.	Inspect the control board for issues. Contact our support team for further assistance and repair.
	Faulty or dirty nozzle.	Clean or replace the nozzle.
	Faulty contact tip.	Inspect and replace the contact tip if worn out or damaged.
	Trigger not pulled while wire is in contact with workpiece.	Pull the trigger while in contact with the workpiece. The machine does not arc unless the trigger is pulled.
	Internal connection issue in the welding machine.	Check internal machine connections or contact technical support.

5.TROUBLESHOOTING

MIG WELDING ISSUES

PROBLEM	POSSIBLE CAUSE	COURSE OF ACTION
Poor quality welds.	Insufficient gas at weld area.	Check that the gas is not being blown away by drafts and, if so, move to a more sheltered weld area. If not, check gas cylinder contents, gauge, regulator setting, and operation of gas valve.
	Rusty, painted, oily or greasy workpiece	Ensure workpiece is clean and dry.
	Poor ground connection or torch/electrode connection.	Check work clamp/workpiece connection and all connections to the machine.
	Incorrect settings.	Check welding parameters and polarity.
Arc works but not feeding wire.	No pressure on the drive roller; insufficient or excessive pressure on the drive roller.	Adjust the drive pressure. See "Installing The Welding Wire".
	Wire spool is empty.	Check if wire is in place and replace if necessary.
Wire is "bird-nesting" at the drive roller or jamming.	Too much pressure on drive roller.	Adjust the drive pressure. See "Installing The Welding Wire".
	Contact tips clogged or damaged.	Replace contact tip.
	Worn guides or drive roll alignment.	Replace parts.
Low output or non-penetrating weld.	Weld parameters too low.	Adjust welding parameters.
	Wrong type or size wire.	Use .030" (0.8mm) ~ .035" (0.9mm) wire.
	Poor ground connection or gun connection.	Reposition clamp and check cable to clamp connection. Check connection of ground cable, gun, and Wire Polarity Drive Lead.
	Wrong size or worn contact tip.	Use .030" (0.8mm) or 0.035" (0.9mm) contact tip with the corresponding wire. Replace contact tip if worn.
	Input power too low.	Have a qualified electrician verify the voltage at your outlet. If the voltage is appropriate, verify that the circuit wiring is sufficient for the circuit breaker size.
	Stick out too long.	Decrease stick out (the amount the wire extends past the contact tip).
	Work clamp, ground cable, and/or welding cable get hot.	Check the connection of the work clamp and gun to the machine. Check the connection of the MIG Gun Connection. Check connection of the ground cable to the work clamp. Tighten cable connection to work clamp if needed. Ensure the connection between the work clamp and workpiece is good and on clean, bare (not painted or rusted) metal. Make sure cable is not damaged.
Gun nozzle arcs to work surface.	Spatter or Slag build-up inside nozzle or nozzle is clogged.	Clean or replace nozzle as needed.
Wire burns back to contact tip.	Wire feed speed may be too high, causing the wire to burn back to the contact tip.	Reduce the wire feed speed.
	High voltage can overheat the wire, leading to burn back.	Decrease the voltage settings.
	Stick-out too short.	Increase stick-out (the amount the wire extends past the contact tip).
	Insufficient or incorrect gas flow can cause arc instability.	Adjust the gas flow to the recommended level.
	The contact tip may be worn, dirty, or not the right size for the wire.	Clean, replace, or ensure the tip size matches the wire.

5.TROUBLESHOOTING

Lift TIG WELDING ISSUES

PROBLEM	POSSIBLE CAUSE	COURSE OF ACTION
Poor starting.	Poor work clamp connection.	Check and secure work connection.
	Start current is too low.	Increase Start current.
Black area along weld bead	Oily or organic contamination on work	Clean work piece.
	Tungsten electrode may be contaminated.	Grind to clean electrode.
	Leaks in gas line or torch connection.	Check connection.
	Gas tank is near empty.	Replace the gas tank.
Unstable Arc.	Contaminated base metal.	Remove materials like paint, grease, oil, and dirt, including mill scale from base metal.
	Tungsten is contaminated.	Remove 25/64" of contaminated tungsten and re-grind the tungsten.
	Arc length too long.	Lower torch so that the tungsten is off of the work piece 5/64"-13/64"(2-5mm).
Arc wanders.	Tungsten incorrect or in poor condition.	Check that correct type of tungsten is being used. Remove tungsten 3/4" from the weld end and re-sharpen the tungsten.
	Insufficient gas shielding.	Check and set the gas flow between 20-30 CFH flow rate.
	Contaminated gas or leaks in gas line, torch, or connections.	Check gas line & connections.
	Poorly prepared tungsten.	Recommend tungsten grind angles range from 15 to 60 degrees based on the type of metal, joint design and penetration you desire. Standard is 30 degrees.
	Contaminated base metal.	Remove contaminating materials like paint, grease, oil, and dirt, including mill scale from base metal.
	Contaminated/Incorrect filler.	Check the filler wire and remove all grease, oil, or moisture from filler metal.

5.TROUBLESHOOTING

Lift TIG WELDING ISSUES

PROBLEM	POSSIBLE CAUSE	COURSE OF ACTION
Lift TIG does not initiate an arc.	No gas, incorrect gas flow.	Check the gas is connected and cylinder valve open, check hoses, gas valve and torch are not restricted. Set the gas flow between 20-30 CFH flow rate.
	Poor work clamp connection.	Check & secure work clamp.
	Contaminated Tungsten.	Grind to clean Tungsten.
	Loose connection.	Check all connectors and tighten.
	Earth clamp not connected to work.	Connect the work clamp directly to the work piece wherever possible.
Tungsten burning away quickly.	Incorrect Gas/Inadequate gas flow.	Check the gas cylinder contains pure Argon gas and is connected and the torch gas valve is open. Set the gas flow between 20-30 CFH flow rate.
	Back cap not fitted correctly.	Make sure the torch back cap is fitted so that the o-ring is inside the torch body.
	Incorrect tungsten being used.	Check and change the tungsten type if necessary.
Contaminated tungsten.	Touching tungsten into the weld pool.	Keep tungsten from contacting weld puddle. Raise the torch so that the tungsten is off of the work piece 1/8-1/4.
	Touching the filler wire to the tungsten.	Keep the filler wire from touching the tungsten during welding, feed the filler wire into the leading edge of the weld pool in front of the tungsten.
	Tungsten melting into the weld pool.	Check that correct type of tungsten is being used. Too much current for the tungsten size so reduce the amps or change to a larger tungsten.

5.TROUBLESHOOTING

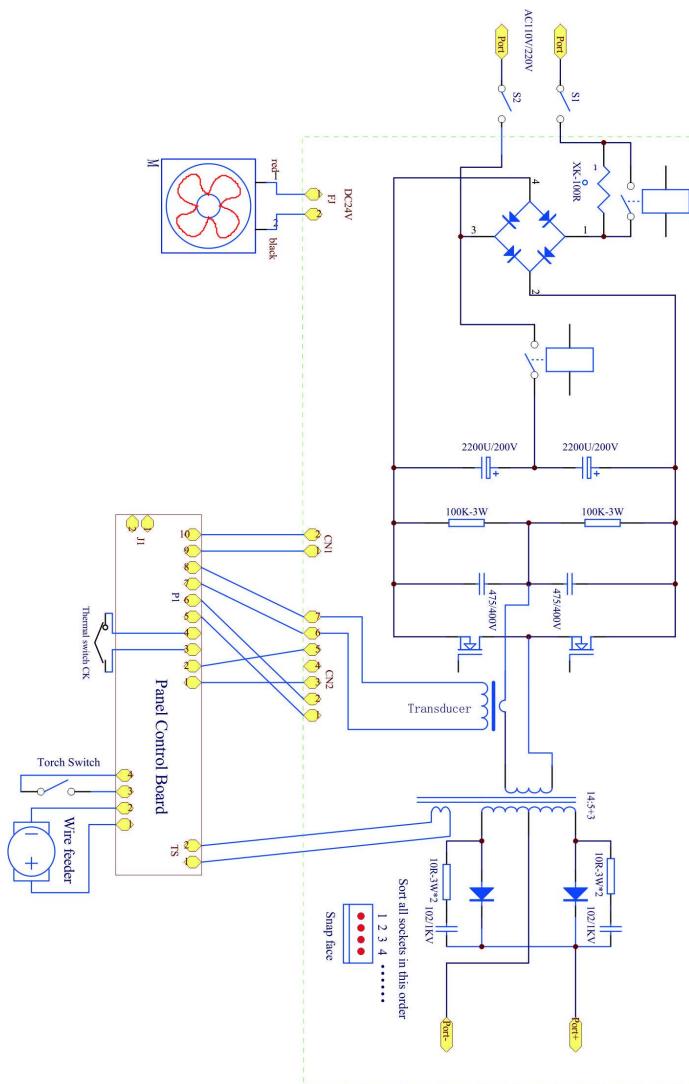
STICK WELDING ISSUES

PROBLEM	POSSIBLE CAUSE	COURSE OF ACTION
Poor starting.	Poor work clamp connection.	Check and secure work connection
Stick electrode "blasts off" when arc is struck.	Current may be set too high for electrode size.	Adjust current.
Electrode "stick" in weld puddle.	Current may be set too low for electrode size.	Adjust current.
Porosity – small cavities or holes resulting from gas pockets in weld metal.	Arc length too long.	Reduce arc length.
	Damp electrode.	Use dry electrode.
	Workpiece dirty.	Remove all grease, oil, moisture, rust, paint, coatings, slag, and dirt from work surface before welding.
Excessive Spatter – scattering of molten metal particles that cool to solid form near weld bead.	Amperage too high for electrode.	Decrease amperage or select larger electrode.
	Arc length too long or voltage too high.	Reduce arc length or voltage.
Incomplete Fusion – failure of weld metal to fuse completely with base metal or a preceding weld bead.	Insufficient heat input.	Increase amperage. Select larger electrode and increase amperage.
	Improper welding technique.	Place stringer bead in proper location at joint during welding.
		changed the word "work" to "electrode" to help better explain angle when welding various positions.
		Momentarily hold arc on groove side walls when using weaving technique.
	Workpiece dirty.	Keep arc on leading edge of weld puddle.
Lack Of Penetration – shallow fusion between weld metal and base metal.	Improper joint preparation.	Material too thick. Joint preparation and design must provide access to bottom of groove.
	Improper weld technique.	Keep arc on leading edge of weld puddle.
	Insufficient heat input.	Increase amperage. Select larger electrode and increase amperage.
		Reduce travel speed.
Burn Through – weld metal melting completely through base metal resulting in holes where no metal remains.	Excessive heat input.	Select lower amperage. Use smaller electrode.
		Increase or maintain steady travel speed.

5.TROUBLESHOOTING

ERROR CODES AND SOLUTIONS

E01


When the overheating indicator illuminates and the digital display reads "E01", it indicates that welding is forced to stop because the main circuit of the machine gets overheated. In this condition, it is unnecessary to turn off the machine, just wait a few minutes til the indicator turns off and the error code disappears, then the welding can be continued.

E02

When the protection indicator illuminates and the digital display reads "E02", it indicates that over current occurs. Restart the machine, then the welding can be continued.

WIRING DIAGRAM

JK-ZJUX-T-MIG-135-90*50LED-110-220V-A0

